
APRIL 2014	 Volume 6, Number 4

Advice for New
Programmers: Choose Your
First Language Wisely
By David Chisnall

Published exclusively for NaSPA, Inc.
Network and Systems Professionals Association

www.NaSPA.com

NaSPA Officers
	 President	 Leo A. Wrobel

	 Secretary/Treasurer	 Sharon M. Wrobel

	 NaSPA Board of Directors
	 Chairman	 Scott Sherer

	 Directors	 Leo A. Wrobel
Sharon M. Wrobel

	 Board Advisor	 Bill Elder

e-mail addressses available on www.NaSPA.com

Technical Support™ Magazine
	 Editor-in-Chief	 Leo A. Wrobel

president@NaSPA.com

	 Managing Editor	 Sharon M. Wrobel
sharon@b4ci.com

	 Associate Editor	 Jim Justen
jmjusten@gmail.com

	 Graphic Designer	 Michelle Majerus-Uelmen
graphics@techenterprises.net

	Vice President of Staff Operations	 Scott Sherer
sherer@NaSPA.com

	 Membership Department	 Nicole Cheever, 414-908-
4945 Ext. 116, Manager
NaSPA_membership@
NaSPA.com

	 Advertising Sales	 Jill Tucker,
414-908-4945 Ext. 111
j.tucker@NaSPA.com

	 CustomerCare Center	 Bonnie Kuchinski,
414-908-4945 Ext. 450
customercare@NaSPA.com

	 List Rental	 Jill Tucker,
414-908-4945 Ext. 111
j.tucker@NaSPA.com

7044 South 13th Street, Oak Creek, WI 53154
(414) 908-4945, (414) 768-8001 Fax

Notice: You have received this magazine because you are a

member of NaSPA, the Network and Systems Professionals

Association, Inc., or you are a NaSPA subscriber. NaSPA believes

this publication to be of value to you and your career. If you wish to

opt-out and not receive this magazine in the future or would like

to change your delivery address, please send an email with your

request to Customer Care, customercare@NaSPA.com.

©2014 NaSPA. All Rights Reserved.

From the Editor- in- Chief

April 2014
Volume 6, Number 4Message from the President

Well, thank you again NaSPA - this time for helping me out with a
family member! As many of you know I have a son, Leo III, that is
recently out of the Navy. He is up to his neck in college and has just
started the MIS and programming courses as part of his engineering
curriculum. I got the inevitable question from him the other night.

"Dad, do you know anything about C++? This course is kicking
my butt."

(Well, words to that effect anyway.)
Iraq and Afghanistan were not too tough for this guy but the con-

cept of programming is a whole other thing. I remember being just
as lost about thirty years ago, which brings me back to my point of
THANK YOU NaSPA. As luck would have it, I only need to refer
my son to this edition of NaSPA Technical Support. Indeed, I hope
this latest edition helps many of our younger members as well with
some great articles including, The Components of a C Program
By Bradley L. Jones, Peter Aitken, and Dean Miller. Maybe even
more on point, Advice for New Programmers: Choose Your First
Language Wisely By David Chisnall. Many thanks to all of you as
well as the other authors in this months’ edition.

Now on to another topic: As you know NaSPA has a great Employ-
ment Site that is updated almost constantly. We are taking it to the
next level. Our staff is in the process of integrating RSS feeds from
our sources into the NaSPA web site at www.naspa.com. We will
soon feature some of the choicest employment opportunities, auto-
matically, right on the face of the NaSPA web site. This way you can
check in whenever you like and instantly find the best I.T. jobs right
there. We will also welcome employers to participate in this feed
and get their positions out there in front of the finest I.T. profession-
als in the world, even before the job sites know about them.

If you are a NaSPA member, check the NaSPA web site often so
you know when our new feed goes on line. If you are a potential
employer, why not contact Jill Tucker right now on how you can
skip non-productive means of filling job vacancies and get right
to the people best suited to helping your organization grow. Her
email is j.tucker@naspa.com. As always, feel free to email me at
president@naspa.com and I'll make sure your communication gets
in front of the right people.

Members and Employers, please consider NaSPA as a partner in
your success. That's why we are here!
Best regards,

Leo A. Wrobel
Editor in Chief Technical Support Magazine
President, NaSPA, President@Naspa.com

2	 Technical Support | April 2014

http://www.naspa.com
mailto:j.tucker@naspa.com
mailto:president@naspa.com

	 Apri l 2014	 Volume 6, Number 4

The information and articles in this magazine have not been sub-
jected to any formal testing by NaSPA, Inc. or Technical Enterprises, Inc.
The implementation, use and/or selection of software, hardware, or
procedures presented within this publication and the results obtained
from such selection or implementation, is the responsibility of the reader.

Articles and information will be presented as technically correct as
possible, to the best knowledge of the author and editors. If the reader
intends to make use of any of the information presented in this publi-
cation, please verify and test any and all procedures selected. Technical
inaccuracies may arise from printing errors, new developments in the
industry and/or changes or enhancements to components, either hard-
ware or software.

The opinions expressed by the authors who contribute to NaSPA
Technical Support are their own and do not necessarily reflect the official
policy of NaSPA, Inc. Articles may be submitted by members of NaSPA,
Inc. The articles should be within the scope of host-based, distributed
platforms, network communications and data base, and should be a
subject of interest to the members and based on the author’s experi-
ence. Please call or write for more information. Upon publication, all let-
ters, stories and articles become the property of NaSPA, Inc. and may be
distributed to, and used by, all of its members.

NaSPA, Inc. is a not-for-profit, independent corporation and is not
owned in whole or in part by any manufacturer of software or hard-
ware. All corporate computing professionals are welcome to join NaSPA,

Inc. For information on joining NaSPA and for membership rates, see
www.NaSPA.com.

Notice: You have received this email because you are a member of
NaSPA http://www.NaSPA.com, the Network and Systems Professionals
Association, Inc., or a subscriber to Technical Support magazine. NaSPA
believes this publication to be of value to you and your career. If you wish
to opt-out and not receive this magazine in the future or would like to
change your delivery address, please send an email with your request to
Customer Care, customercare@NaSPA.com.

All product names and visual representations published in this magazine
are the trademarks/registered trademarks of their respective manufacturers.

7044 S. 13th Street, Oak Creek, WI 53154-1429.

NaSPA Mission Statement:

The mission of NaSPA, Inc., a not-for-profit organization, shall be to
serve as the means to enhance the status and promote the advance-
ment of all network and systems professionals; nurture member’s
technical and managerial knowledge and skills; improve member’s
professional careers through the sharing and dispersing of technical
information; promote the profession as a whole; further the under-
standing of the profession and foster understanding and respect for
individuals within it; develop and improve educational standards; and
assist in the continuing development of ethical standards for practitio-
ners in the industry.

NaSPA serves Information Systems technical professionals working
with z/OS, OS/390, MVS, VM, VSE, Windows Operating Systems, Unix,
and Linux.

Articles

	 4	 The Power of the Principles in Project
Management
By Jack Ferraro

	 6	 Advice for New Programmers: Choose
Your First Language Wisely
By David Chisnall

	 10	 Getting Your Disaster Recovery Plan
Funded with an Awesome Business
Impact Analysis: Part 1 of 3
By Leo Wrobel and Sharon Wrobel

	 14	 Tapping the Quiet Power of Introverts in
a Virtual World
By Nancy Settle-Murphy

	 16	 Deployable Fiber Optic Systems for
Harsh Industrial Environments
By Rick Hobbs

	 19	 The Components of a C Program
By Bradley L. Jones, Peter Aitken, Dean Miller

Departments

	 2	 President’s Letter

Call 414-908-4945, Ext. 116 or
e-mail NaSPA_membership@NaSPA.com

for more information.

Join NaSPA now!

Technical Support Magazine brings you an eclectic
collection of articles, of interest to Information
Technology professionals of all types. Do you have
valuable insights and ideas that can be shared
with NaSPA members? Fresh, timely ideas are
important to our members, even if you have never
published before. Our editorial staff is here to help
and welcomes your submission. It’s never too late
to start. Contact president@naspa.com for more
information or to submit your article for review for
possible inclusion in a future edition of Technical
Support.

Call for Authors

3	 Technical Support | April 2014 www.NaSPA.com

mailto:president%40naspa.com?subject=

The Power of the Principles in Project
Management

B y J a c k F e r r a r o

In each project I take on for a client, I seem to relearn
the same principles of success in project management.
When I start to become curious about the latest proj-
ect management fads—automated PMOs, Agile PM
certifications, Lean Project Management—I find that I
come back to these basic principles.

The first is that relationships are extremely important.
Trust-based relationships make it possible to survive
the chaos the change in organizations brings to people's
lives. For me, the relationship with my customer—the
person who is 50 percent of the provider/customer
relationship that sustains the momentum of change—
eventually becomes the
critical make-or-break fac-
tor for me to be successful
in serving them. This rela-
tionship involves an emo-
tional investment by both
parties, but it is ultimately
based on a trust steeped in
a level of respect for each
other's competence and a
shared vision. When my
customers tell me to make
tactical project decisions
for them because they trust
me, I know I have earned
a special place in their
eyes. When my customers take on the difficult political
challenges that occur when organizations are trying to
change, a task that is neither easy nor comfortable, they
have in turn earned a unique spot in my professional
life.

A second principle I relearn is that good planning
is essential to project management. A good plan has
the right amount of detail for the specific situation; it
arrives in the right time to align stakeholders, and is
easy to comprehend. I understand that a customers not
accustomed to planning complex projects can become

mentally frozen, not knowing where or how to begin
to tackle the enormity of the initiative. Unfortunately,
many unseasoned project managers hit the same icy
mental state early in projects. I relearn that when I am
overwhelmed with a mountain of project uncertainty,
differing political agendas, and skeptical project team
members, I have been able to refocus the negative
energy on simply defining the real need and developing
a mission statement to address that need. It sounds so
simple but creates a platform to deal with some of the
most difficult political issues early in the project, or at
least have them acknowledged. This helps blunt per-

sonal agendas, sets a tone
of serious discussion, and
establishes how to measure
project success. I relearn
that staying focused on
deliverables is essential
and effective leadership,
which sets direction and
aligns resources to the
mission. As soon as I stop
focusing on deliverables,
the project drifts into con-
fusion, resources become
unproductive, and morale
plummets. Creating a por-
trait of the work of the

project and delivering on that portrait creates believ-
ers in the project mission out of naysayers. The skill
of articulating the story of the project—sequencing of
the deliverables—and highlighting key decision points
while instilling accountability in both the project team
and customer team members works even in the most
dysfunctional situations. Why? Because it is simple
concept: a provider producing a deliverable for a cus-
tomer. The basic premise is that the customer has the
intelligence and competence to know what they want
and the project team has the competence to produce it.

The skill of articulating the story

of the project—sequencing of the

deliverables—and highlighting

key decision points while instilling

accountablility in both the

project team and customer team

members works even in the most

dysfunctional situations.

4	 Technical Support | April 2014 www.NaSPA.com

technical support | article

Everyone has participated in the model in some fashion
during their life.

I relearn that strategic projects are embroiled in con-
flict—conflict between the status quo and agents of
change, the risk averse and risk takers, the pacifiers and
inciters. This conflict must be awakened for the organiza-
tion to address and resolve the tension that has long been
dormant. Without that tension, the organization is not
likely to move forward. Managing this conflict is a part of
the landscape. How you manage it will determine whether
the conflict becomes positive energy to support lasting,
fundamental change in the organization, or whether it
becomes negative energy, worsening the organization's
inability to change.

I relearn during each project that having healthy discus-
sions about risk helps everyone sleep at night. The feeling
of bearing the weight of serious project risk by yourself
is not healthy. Having open dialogue about risks cre-
ates the reality of people being informed and sharing the
responsibility of managing risk. Without accountability
instilled through these basic planning competencies, risk
is ignored or actively avoided at a cost to the organization
and its employees—those same employees who come to
work each day wanting to believe in the organization's
leaders, management, values and mission.

I used to believe that only the project manager needed
these planning skills. I was wrong. I have learned, and
that learning has been reinforced in each project since,
that these critical skills are required not just by the project
manager—but by the customer. Take the opportunity to
find a teaching moment to educate your customer.

However, no matter how good you are at building rela-
tionships and planning projects you still must be able to
execute. Executing the project plan begins with commu-
nicating it to your stakeholders. I relearn each project how
important it is to communicate and occasionally "sell"
your plan. Sometimes the plan is so familiar and intuitive
to me, I forget that stakeholders are seeing it for the first
time. Those first few encounters with your key stakehold-
ers are truly critical because the first impressions of your
plan are lasting. They will leave with an impression that
you "got it" or your "lost."

Jack Ferraro, PMP founded MyProjectAdvisor, a project management services
company that provides project management training and leadership devel-
opment. Jack has 20 years of experience working with project teams with
extensive experience managing complex enterprise technology and business
process improvement projects. A speaker and author, he can be heard at The
PDU Podcast.

Certain names and logos on this page and others may constitute trade-
marks, servicemarks, or tradenames of Taylor & Francis LLC. Copyright ©
2008—2012 Taylor & Francis LLC. All rights reserved.

Experts.com was established to allow professionals
a robust platform to showcase their expertise. Since
1994, Experts.com has been a resource of specialized
knowledge to attorneys, businesses, reporters,
insurance companies, media, and countless others.
From simple business consultation to complex
litigation, Experts.com is the Effective, Efficient, and
Economical way for organizations to find and retain
Experts and Consultants - like you.

Now NaSPA Members can launch their careers to
the next level and showcase their skills worldwide.
NaSPA Members get a 20% discount off the already
low $250 rate. Just imagine, worldwide exposure
right now to people who need your services, for only
pennies a view. Companies and consulting firms are
welcome to join as well.

Another Great Reason to Join

Cash In On Your Information Technology Expertise with Experts.com

Showcase Your Skills Worldwide at a GREAT NaSPA Member Discount!

Whether you are considering your next big career
move, or are building a consulting practice, or just
want to better market your expertise, Experts.com is
the perfect complement to your NaSPA membership.
It’s easy. If you are already a NaSPA member, just
enter discount code 20NaSPA and get 20% off. Not a
NaSPA member yet? No problem. Join NaSPA for as
little as $45. You still get the 20% discount plus all
the other great NaSPA benefits including insurance
discounts, access to our expansive on-line technology
library, our award-winning publications and more.
Since 1986 NaSPA has been the premier advocate to
Information Technologists everywhere. Now you
have another reason to join. For more information
see www.naspa.com or click below.

Join Experts.com Now Join NaSPA Now
Disaster Recovery Planning

> Information
 Systems

> Communications

> Critical
 Infrastructure

> Books and
 Training b4Ci Inc.

www.b4ci.com

5	 Technical Support | April 2014 www.NaSPA.com

http://naspa.com/files/04-15-13Call%20for%20Authors.pdf
http://www.experts.com
http://www.crcpress.com

Advice for New Programmers: Choose Your
First Language Wisely

B y D a v i d C h i s n a l l

Article is provided courtesy of Addison-Wesley Professional through NaSPA supporter Informit.com. Visit informit.com for more interesting content.

David Chisnall, who works on programming lan-
guage design and implementation at the University of
Cambridge, provides two tips for new programmers:
choose your first language carefully, and take the time
to learn the underlying theory behind it.

I learned to program when I was 7, on a BBC Model
B with a dialect of BASIC and two dialects of Logo
installed. The most important thing for me when I was
starting was to find something interesting to work on.
It's hard to be motivated to learn to do anything without
some reason. I was taught to write some simple games
(guess the number) and then learned about simple
drawing and wrote small graphical games. Back then,
the difference in quality between what I could create
and commercial games wasn't too huge: most commer-
cial games were written by one or two people and the
limitations of the machine were such that you didn't get
significantly more complexity by adding more people.

There are a few potential pitfalls when you're learn-
ing to program on your own. In particular, it's very easy
to pick up bad habits, and the more that you practice
them the worse they get. This is most apparent if you
try learning a language that is designed for industrial
use first, rather than one designed for teaching. This
is part of the reason why I advocate trying lots of dif-
ferent programming languages. Languages like Python
make terrible first languages. Anything that describes
itself as "multi-paradigm" generally means that it badly
implements a lot of possible programming models.

If you want to learn object-oriented programming
(and you almost certainly do), then the best place to
start is Smalltalk. This, in a system like Squeak or
Pharo, gives you an environment where you can inspect
everything and where everything is an object. The lan-
guage is simple enough that it takes half an hour or so
to learn, but the time you spend trying it will teach you

to write good object-oriented code in any language,
even if you never touch Smalltalk again. In contrast,
learning a language like Java or C++ first will give you
a myriad of bad habits that are very hard to break.

I'd also strongly recommend learning an assembly
language, or at the very least a low-level language
like C. Again, you don't have to ever use them later,
but understanding how high-level constructs map to
something that the computer can execute is incredibly
valuable.

Understanding the Underlying Theory of
Languages

BBC BASIC was not a bad first language, in spite
of the overwhelming prejudice against BASIC. It
included an inline assembler, so you could get a feel
for exactly how things executed on the 6502 processor
in the machine, and let you directly manipulate mem-
ory via PEEK and POKE, typically for interacting with
memory-mapped I/O. Unlike many contemporary dia-
lects of BASIC, it supported structured programming,
via subroutines.

I probably wouldn't recommend the BBC micro to
new programmers today, because the sparsity of the
development environment would be intimidating, but
it's worth remembering that the first language that you
learn almost certainly won't be the one that you use
for real projects later. If it is, you're probably doing
something badly wrong, because you won't ever fully
understand the limitations of one language until you've
learned a few more. There's a small chance that after
learning a dozen languages you find the first one you
learned was the best for everything that you need to do,
but it's quite unlikely.

One trap that self-taught programmers often fall into
is neglecting the importance of the underlying theory.

6	 Technical Support | April 2014 www.NaSPA.com

technical support | article

I began learning to program when I was 7, and when
I arrived at university I was pretty sure that I already
knew all of the programming-related parts of the course.
It turned out that my lack of knowledge of graph theory
and complexity theory was a serious limitation.

In general, the first year of a computer science pro-
gram tries to teach you two fundamental concepts. If
you understand these two ideas well, then you should
have no problem with the rest of the course. If you
don't, then you'll struggle. These concepts are induc-
tion (recursion) and indirection (pointers).

Induction
Induction is the idea that you can define an infinite

series by defining a few simple cases and defining a
rule that allows you to reduce a complex sequence to
a simpler one. For example, you can define multiplica-
tion in terms of addition as:

1) n × 0 = 0
2) n × 1 = n
3) n × m = n × (m - 1) + n
If you then want to evaluate 5 × 3, then you look for

the first matching rule. It's the third, one, which gives: 5
× (3-1) + 5, or 5 × 2 + 5. Apply it again to that and you
get 5 × (2-1) + 5 + 5, or 5 × 1 + 10. Now, the second
rule applies and so the 5 × 1 part becomes 5, and so the
result is 15.

This is very powerful, because it's simple pattern
matching and then applying rules: something that the
computer is very good at. You could imple-
ment this in a programming language as
something like:

int mult(int x, int y)
{
 if (y == 0)
 return 0;
 if (y == 1)
 return x;
 return mult(x, y-1) + x;
}
Multiplication is a pretty trivial example:

most computers have hardware for doing
multiplication, and it's a lot faster than
using this approach, but for more complex
things, if you can understand the problem
in terms of induction then you can imple-
ment it in terms of recursion. This is one
of the reason why most universities teach
Prolog to undergraduates: you can't write
even simple programs in Prolog unless you
understand induction, and once you under-

stand induction you've got a very powerful tool to rea-
son with.

Indirection

The other core concept, indirection, is fundamental
to building complex data structures. It's simply the idea
that a variable, rather than containing a value, can tell
you where to look for a value. In a computer, your data
is stored in memory and so a variable name is just a
human representation of the address of something in
the computer's memory. A pointer is just the address of
another bit of memory, stored in memory.

Languages like C allow arbitrary levels of indirec-
tion, so you can have pointers to pointers to pointers
and so on. To the computer, it's nothing special. Most
computers don't distinguish between data and addresses
(which has been the source of myriad security vulner-
abilities over the years, but that's another story), so you
can store an address anywhere you can store data. The
computer just loads the value and, if you treat it as an
address rather than data, and loads the value from that
address.

Some IBM mainframes tried to optimise for this by
having special values that, when you loaded them,
would actually load the result. This caused some prob-
lems when people created circular sequences of these

7	 Technical Support | April 2014 www.NaSPA.com

http://www.libertymutual.com/naspa

Call for Original Articles and Technical Papers
NaSPA invites you to submit a 1000-1500 word article or research paper for one of our
publications. The topic is open as long as it is germane to IT, however mainframe, data center,
and other high end operations and systems programming subjects will be given preference.

You must be a NaSPA Member in good standing. Gold Membership is FREE. Platinum
Members enjoy higher publication priority for only $39.00 yr. All members receive:

- Technical Support Magazine Subscription - Discounts on NASTEC and IDCE Shows
- Employer Advertising Discounts - Discounts on Auerbach and Cisco Press Publications
- Expansive On-Line Technical Library - Home and Car Insurance Discounts
- Job Placement and Hiring Site - More

Restrictions apply and all articles become property of NaSPA. For
more info and author agreement Email president@naspa.com. First
time authors welcome. Remember, whether you are already in the IT
profession or are still in school, articles look GREAT on a resume!
Corporate submissions acceptable if they are not overt sales pitches.
What are you waiting for? Get your name out there today in
one of NaSPA’s great publications!

The Network and Systems
Professionals Association
(NaSPA) has provided award
winning publications like
Technical Support Magazine to
Information Technology (IT)
professionals worldwide since
1986. Our publications begin
and end with people like YOU.
NaSPA has published the work
of hundreds of IT professionals
for the benefit of thousands of
members and IT practitioners.
Do you have what it takes to
be a NaSPA contributor? We
invite you to find out today.

Give Your Information Technology Career That “Extra Edge.”

Get Published with NaSPA

http://naspa.com/files/04-15-13Call%20for%20Authors.pdf

values, causing the computer to loop forever trying to
find the result that wasn't just another pointer.
Ignore Theory at Your Own Risk

Pointers are one of those things that are hard to
explain, because once you understand them you won-
der how you (or anyone else) ever found them com-
plicated, but they're one of the core building blocks of
programs. One of the problems with using languages
like Java or Python for teaching is that students only
learn about references, which are a somewhat reduced
version of a pointer, lacking the generality in the inter-
ests of ease of use. While Java references are easier to
use correctly than C pointers, they're slightly harder to
understand, because now you have some things that
can have references to them (objects) and lots of other
things that can't (references, integers, floating point
values), and no obvious reason why not. In contrast, C
lets you use the full expressiveness of the underlying
machine, even if you then use that to shoot your own
feet off.

David Chisnall arrived at the Swansea University in 2000, looked at the
sun and sea, and decided to stay there. Three years and one degree later,
he was no longer under the illusion that the sun was a regular feature,
but was persuaded to remain for another degree by the promise of a
desk with a view of the sea. During his time as a PhD student, he worked
hard at the best known of postgraduate activities: procrastination. This
involved writing portions of A Practical Guide to RedHat Linux, Second
Edition and regular articles for InformIT and a local tech news startup
(which, as these are prone to do, has since gone bust).

David is an active member of the open source community. He is a found-
ing member and core developer of the Étoilé project, which aims to build
an open source user environment based for desktop and mobile comput-
ing systems on top of GNUstep. He also contributes to GNUstep and is the
author of the GNUstep Objective-C runtime and maintains Objective-C
support for open source operating systems in LLVM/Clang. In 2012 he was
elected to the FreeBSD Core Team. His contributions to FreeBSD include
improvements to locale support in libc, the port of libc++, and a replace-
ment C++ runtime library: libcxxrt.

In 2007, David's first book, The Definitive Guide to the Xen Hypervisor,
was published. This was begun as a procrastination activity, to distract
himself from his looming PhD thesis deadline, and was successful: the
book and the thesis were both completed within a fortnight of each
other. He spent the next few years working freelance and writing three
more books, two about Objective-C and one about Go, before returning to
academia. He is now part of the Security Group at the University of Cam-
bridge Computer Laboratory where he works on language and hardware
co-design and continues to consult on compiler and language-related
topics.

9	 Technical Support | April 2014 www.NaSPA.com

http://www.ciscopress.com

Getting Your Disaster Recovery Plan Funded
with an Awesome Business Impact Analysis:
Part 1 of 3

B y L e o W r o b e l a n d S h a r o n W r o b e l

In the first of a three-part series, Leo A. Wrobel and Sharon M. Wrobel
discuss some of the crazy ideas that you may have about why management
won't fund your disaster recovery plan. You need to revise your thinking
to create a successful business impact analysis that will put money in
your budget.

There’s an old saying I’ve often quoted: "Lawyers
use figures the way a drunk uses a lamppost—for sup-
port, rather than illumina-
tion." It’s kind of like that
when you decide to take
the plunge and ask man-
agement to fund a disaster
recovery plan. The figures
you use and the presenta-
tion you make can support
your plan and illuminate
management—but only if
you do it correctly. If you
put together a compelling
business impact analysis (BIA) and conclusively con-
vince management of the vulnerability that exists in the
organization’s environment, your recovery plan WILL
be funded.

That statement brings to mind a routine from Larry
Fine of "Three Stooges" fame:

Rich Guy: "If you had a dollar, and your father gave
you another dollar, how many dollars would you have?"

Larry: "One dollar."

Rich Guy: "You don’t know your arithmetic!"

Larry: "You don’t know my father!"
If you substitute the word boss for father, it probably

closely approximates the thought that went through
your mind the instant that I said your plan would be
funded: "Leo, you don’t know my boss!"

Actually, I do know your boss. Probably not literally,
of course, but I have worked with the animal before.
Nobody is more acutely aware than I am that money is
very hard to come by these days—after all, I work as a
consultant. Even so, I’m not starving in this profession
(well, most months, anyway). I like to think that this is

because, after 25 years in
the disaster recovery busi-
ness, I know a thing or two
about convincing skeptical
management.

In this three-part series,
I’ll impart a few tricks of
the trade that might help
you to finally get some
funding and commitment
for your recovery plan. It’s
not as tough as you may

think, provided that you do your homework in advance.
Let’s start by dispelling a few myths.

Myth 1: Management Doesn’t Care About
Disaster Recovery

Wrong, wrong, wrong. Disaster recovery, contin-
gency planning, risk mitigation, or whatever you want
to call it is a fundamental and fiduciary responsibility
of executive management. The topic often comes up
at Board of Directors meetings, and right on down the
totem pole. I know from experience, because I’ve been
a CEO for a corporation.

By its makeup, a corporation can do anything a per-
son can do—except commit a crime. If that were to
happen, the people who lost equity in the corporation
due to my (in this example) gross negligence would not
stop at suing the corporation—they could come after
me as well. Why? Because they can.

“Lawyers use figures the

way a drunk uses a lamppost

- for support, rather than

illumination.”

10	 Technical Support | April 2014 www.NaSPA.com

technical support | article

This fact is never far from management’s conscious-
ness, particularly since passage of the Sarbanes-Oxley
Act of 2002, which provides a whole bunch of ways
in which CEOs and CFOs can be held accountable for
things. In fact, you will be every bit as hard-pressed to
find an executive who says a disaster recovery plan is a
bad idea as to find a person who says a pre-need funeral
plan is a bad idea. Most people agree that a pre-need
funeral plan—in principal, at least—is a good idea.
Having said that, do you have one? How many people
do you know who do have one? Answer: Not many.

The same problem exists with recovery plans, which
are delayed for many of the same reasons, centering
around competing priorities, lack of time, or a sense
that it will be too expensive. All of these kinds of con-
cerns can be assuaged through a compelling BIA and
crisp presentation that puts the problems in terms the
executive can understand.

So what can you expect from your BIA and resulting
presentation? I’ve mentioned in lectures and in previ-
ous articles that management can respond with one of
three answers to a funding request:

Yes.
No.
Let’s study this some more.
Which of the three do you suppose is the most com-

mon answer? If you chose "Let’s study this some
more," you’re correct, and no doubt have been through
such a request process.

So what can you do to get a "Yes" response? I like to
stack the deck before going into a meeting to request
funding. I’ll show you some of those tricks in this series,
but first let’s continue myth-busting with another com-
mon misconception:

Myth 2: Management Doesn’t Understand a
Disaster’s Impact on the Business

Wrong again! Management has a very good idea of
the impact of a disaster on the business. Think about
it. Senior executives get paid based on how the busi-
ness performs (in theory, anyway). Vice presidents
of marketing or sales, business controllers, etc. know
where the money comes from; it’s part of their scope
of responsibility and probably part of their compensa-
tion plan. So it’s possible to play on this fact a little. If
you’re successful in showing an executive the impact
of a disaster on the business, in terms that he or she
understands (read: dollars), you’ll have the exec’s atten-
tion—and, more importantly, gain his or her support.

Obviously, one of the first things you’ll need is a
crisply presented business impact analysis. With this
analysis, using non-technical terms that management
can understand, your plan will be funded. If there are
any ambiguities or doubts, however, management will
want to "study some more," and you could walk out
of your meeting with a longer to-do list than you had
when you went in.

Myth 3: Management Will Never Fund a Recovery
Plan

It has been my experience that people who strike out
on funding year after year have something very wrong
with how they’re asking for money. Everyone will
agree that the last thing management wants to endorse
is money down a rat hole. If you don’t have your facts
straight, that’s just how your funding request can be
taken. If you can apply a proposed expenditure to a
problem that everyone in the room agrees needs to be
addressed, your plan will be funded. Executives are not
in those seats because they’re bashful, and under the
circumstances they will spend money.

So how do you convince management of the legiti-
macy of your request? What kinds of facts are most
relevant and important to management?

Fundamentally, management needs to know only four
things in order to decide whether to fund your plan:

•	 What can happen? (Fire, flood, hurricane, sabo-
tage, etc.)

•	 What is the probability that it will happen?
(Expressed best in percent probability of the
event in a given year.)

•	 What does it cost when it happens? (Think in
terms of lost sales, market share, employee pro-
ductivity, and customer confidence.)

•	 What does preventing it cost? (Present a high-
level overview of the proposed protective system,
procedure, or function.)

There is a possible fifth question you can also address:
What are the other factors? (Consider legal liability,

government requirements, Sarbanes-Oxley, etc.)
What Should Be Included in a Business Impact

Analysis?
First, consider that your company probably doesn’t

do only one thing. It has different businesses, or at a
minimum different business dynamics in each business
unit. All have different pain thresholds. Some can last
a month after a disaster, others scream within hours.
If you don’t take this factor into account, management
will discount your BIA.

11	 Technical Support | April 2014 www.NaSPA.com

www.naspa.com

7044 S. 13th St.
Oak Creek, Wisconsin 53154

(414) 908-4945 x 111

Are YOU Hiring? Find one of the most useful EMPLOYMENT
SITES in the industry, proudly sponsored by one of the most
trusted names in information technology.

Since 1986, NaSPA (the Network and Systems Professionals
Association) has been the premier not-for-profit advocate to
Information Technology (I.T.) and Network professionals
worldwide. Thousands have coursed through NaSPA training
programs, subscribed to its award winning publications,
attended its conferences and trade shows, and enjoyed the
many benefits of membership. Platinum members, access our
expansive SOFTWARE LIBRARY including recent contributions
and those hard to find “legacy” applications!

If you are looking for the perfect employment candidate, it’s
all in one place you can truly trust. Explore the many benefits
NaSPA offers to its members, for FREE. At the same time
re-energize your organization with proven nutrition from our
vast membership pool. Don’t do anything until you talk to us!
Dollar for dollar we are the best value in the industry for
finding that next candidate. Visit our EMPLOYMENT SITE and
see for yourself, or email Jill Tucker at j.tucker@naspa.com.

Your Organization. It is What it Eats.

Supplement Facts
 Serving Size: All You Can Eat
 Servings Per Container: 1

 Amount Per Serving % Daily Value

 Energy 100%

 Experience 100%

 Enthusiasm 100%

 Initiative 100%

 Technical Savvy 100%

 Reliability 100%

* Percent NaSPA-Established Daily
 Values based on organizations
 that want to succeed and prosper!

http://careers.naspa.com/home/index.cfm?site_id=190
mailto:j.tucker%40naspa.com?subject=

Note

Screaming is not the litmus test of being mission-crit-
ical. Often, the people who scream loudest are the least
mission-critical, while others who don’t make a sound
can cripple the company if they’re affected.

Next, you’ll need to learn about each business unit,
including its pain threshold, to present a valid analysis.
Talk to responsible managers and executives that man-
agement holds in confidence. That way, when the time
comes for the big funding request meeting, manage-
ment will have seen these figures. How can manage-
ment disagree with its own figures? See what I mean by
stacking the deck beforehand?

Obviously, I have no idea what kind of company you
work for. But I can make a few assumptions for you,
and the next article in this series will walk through a
sample BIA. I’ll even include slides from winning pre-
sentations for real companies. Produced and presented
properly, these slides can be the cornerstone of your
executive presentation for support and funding. They
also serve as a springboard to fruitful discussion and
thoughtful technological planning.

As a litmus test, we’ll ask whether your non-technical
wife, husband, father, mother, or grandmother would
understand the messages your slides carry. If so, your
presentation is ready for management. Don’t laugh!
This kind of approach in making presentations to exec-
utives can be used in a wide variety of companies, and

for purposes that go beyond disaster recovery. If you
can "sell" management on a disaster recovery project,
you can sell them on other things you need. The key is
learning how to communicate in management’s terms.
They’re not going to learn yours! And if you wait year
after year for them to understand you, all you’ll get is
frustration—not money.

See you next month!

This series was previously published by longtime NaSPA supporter
Informit.com.

NaSPA President Leo A. Wrobel has more than 30 years
of experience with a host of firms engaged in bank-
ing, manufacturing, telecommunications services, and
government. An active author and technical futurist,
he has published 12 books and more than 1000 trade
articles on a wide variety of technical subjects. Leo
served 10 years as an elected mayor and city coun-
cilman (but says he is better now). A sought-after
speaker, he has lectured throughout the United States and overseas and
has appeared on several television news programs. Leo is presently CEO of
Dallas-based TelLAWCom Labs Inc. and b4Ci, Inc. Contact Leo at 214-888-
1300 or email leo@b4ci.com.

Sharon M. (Ford) Wrobel is a Director at NaSPA and
Managing Editor for Technical Support Magazine. She
can be reached at sharon@b4ci.com.

The key to selling to

management is learning

how to communicate in

management’s terms.

13	 Technical Support | April 2014 www.NaSPA.com

http://www.securityrecruiter.com

Tapping the Quiet Power of Introverts in a
Virtual World

B y N a n c y S e t t l e - M u r p h y

Think about it: There’s zero correlation between
being the best talker and having the best ideas. And yet,
according to Susan Cain, author of the groundbreaking
book, Quiet: The Power of Introverts in a World That
Can’t Stop Talking, our society is overwhelmingly
biased toward extroverts.

This bias is glaringly obvious in our workplace, where
teamwork, groupthink and collaboration are prized
over deliberate, solitary work and quiet thought. In a
world where the “ideal” employee is seen as gregarious,
action-oriented, decisive, confident and bold, introverts
are often undervalued, overlooked and dismissed. The
kind of “people skills” that extroverts often exhibit
are increasingly emphasized in performance reviews,
while qualities more likely associated with introverts,
like reflection, thoughtfulness, and quiet listening are
rarely mentioned.

This favoring of extroverts is especially true in the
virtual workplace, where introverts are often bypassed
in favor of their more garrulous, dynamic colleagues.
Why? For pretty much the same reason the proverbial
squeaky wheel gets the grease: People who are quick to
volunteer their ideas and freely share opinions can make
life a lot easier for virtual leaders who otherwise must
figure out ways to cajole and persuade their more intro-
verted counterparts to join in the conversation. Far less
effort to let the more extroverted team members lead
the conversations, hoping they may somehow inspire
the more reticent ones to participate—eventually.

In this article, I explore ways that virtual team lead-
ers can learn how to take advantage of the quiet power
and special strengths of the introverts on their teams,
instead of trying to make their introverts conform to the
“extrovert ideal.” (Please note I have made some gen-
eralizations about introverts and extroverts for instruc-
tive purposes. In reality, many of us, at least from time
to time, display qualities of both extroverts and intro-
verts, depending on the situation.)

Remarkable powers of concentration: Introverts have
the ability to focus on problems, especially those that
require deep thinking, for unusually longer periods of
time, especially if they have are freed up from having
to work with colleagues in the name of “teamwork.”
As a team leader, consider assigning your introverts
those tasks that can be done well (if not better) inde-
pendently, with relatively few dependencies on other
team members to get the job done. Ideal projects might
include gathering primary or secondary data, analyzing
results, assimilating recommendations, and formulat-
ing action plans.

Ability to articulate clear ideas in writing: Because
introverts tend to stop, reflect and absorb information
before speaking, they reflect this kind of deliberate
thought in their writing as well. Need someone to for-
mulate a cogent proposal, recommendation, summary
or other presentation of important ideas? Your best bet

14	 Technical Support | April 2014 www.NaSPA.com

technical support | article

just may be an introvert on your team. (This may be
counterintuitive to some leaders, who often assume that
charismatic speakers can successfully translate those
same speaking skills into written form. The opposite is
often true!)

Active listening and diagnostic abilities: Introverts
tend to be more comfortable listening, versus speaking.
This is an especially crucial skill in the virtual world,
where acute listening skills help us to fill in the gaps
left by the absence of visual cues. Tap into the intro-
vert’s exceptional ability to listen by asking him or her
to formulate insightful questions, conduct important
interviews, or act as a note-taker or observer for team
meetings, paying close attention to invisible organi-
zational dynamics that be hard for others to discern.
Introverts do a particularly good job demonstrating
their sharp listening skills by paraphrasing and summa-
rizing key points, whether verbally or in writing.

Deep reflection: To make their best contributions,
introverts need time to pause, reflect, and think before
speaking. That’s why it’s vital to design your team
meetings, whether in person or virtual, to build in time
to allow people to pause and think, whether by using
silence to allow time for reflection, or providing a quiet
forum for participation, such as by using an online con-
ference area, or asking people to jot down ideas quietly.
This way, you enable introverts to contribute their ideas
and opinions more easily and freely, and you also help
to balance participation between your extroverts, who
can sometimes be a tad overzealous in their verbal con-
tributions, sometimes causing your more circumspect
counterparts to withdraw or shut down.

Attention to detail: Enable your introverts to partici-
pate fully in your next important team meeting by clari-
fying objectives, stating goals, and setting expectations
up front. Make sure everyone knows what content will
be important to learn and assimilate in advance, and
what questions or ideas they should have ready to bring
to the table. (If you’re thinking that designing a pre-
work component to your meeting is an unnecessary
bother since most people don’t do it – reconsider your
assumptions. While it may be true that not everyone
will invest time and thought in planning how they want
to participate ahead of time, you can bet that your intro-
verts will appreciate the opportunity.)

Relationship-building. While your extroverts social-
ize more easily with many different kinds of people,
your introverts have a particular talent for developing
close, trusting relationships with those who are truly
important to them. (Many people assume that an intro-

vert is overly shy just because s/he is selective about
with whom to socialize. It’s more often the case that
the introvert has less tolerance for social chit-chat and
superficial relationships in favor of more meaning-
ful discussions and deeper connections.) If your team
needs stronger connections with key people in other
organizations, or perhaps with your clients, the intro-
verts on your team can be your best choice. While
your social butterflies may draw energy from relating
to sheer numbers of people, your introverts are more
switched on by fewer, deeper connections—the kind
that build lasting relationships.

Creative super-powers. Still think that the best ideas
are generated by groups of people working together in
real-time? Many recent studies refute the notion that
group brainstorming necessarily results in the highest
quantity or quality of innovative ideas. In fact, it is often
independent brainstorming that yields the best ideas in
the shortest period of time, second only to online brain-
storming, where people can contribute ideas in a shared
area at any time, from anywhere. Some people may be
at their creative best when they can bounce ideas off of
each other in real-time, while introverts tend to do their
best innovative thinking alone. Leaders who rely on
their team members to ignite that creative spark must
find ways to enable all kinds of brainstorming, in dif-
ferent venues, at different times.

In a world that correlates the strength of an organiza-
tion’s teamwork to its overall success, the real value of
introverts often gets overlooked. In the virtual world,
it’s even easier to ignore or dismiss introverts as being
key members of the team, simply because it can take
so much more effort to find ways to enable them to
make their best contributions. Assuming that your team
represents a microcosm of the larger world where fully
one-third to one-half of all people are introverts, it’s
time to find new ways to leverage the potential of some
of your quietest team members, who just may be the
best and the brightest, if only you take time to hear
them.

Nancy Settle-Murphy, Guided Insights founder and principal consultant,
draws on an eclectic and varied combination of skills and expertise. She
wears many hats, depending on the challenges she is helping clients to
solve. She acts as meeting facilitator, virtual collaboration coach, change
management leader, workshop designer, cross-cultural trainer, commu-
nications strategist and organizational development consultant.

 http://www.guidedinsights.com/about-us/

Certain names and logos on this page and others may constitute trade-
marks, servicemarks, or tradenames of Taylor & Francis LLC. Copyright
© 2008—2011 Taylor & Francis LLC. All rights reserved.

15	 Technical Support | April 2014 www.NaSPA.com

 http://www.guidedinsights.com/about-us/

Deployable Fiber Optic Systems for Harsh
Industrial Environments

Deployable systems, often exposed in harsh industrial environments, come battle-tested

B y R i c k H o b b s

As the utilization of fiber optics has increased within
the industrial sector, so have the number of “deploy-
able” systems used in applications from oil and gas
exploration, drilling and distribution to mining.

As opposed to fixed installations, deployable systems
are designed to be quickly installed, retracted, and then
relocated in the field and even deep underground in
some of the most inhospitable environments on earth.

Given the environments in which they reside, indus-
trial-grade fiber optic systems are typically commer-
cialized versions of field-tested, proven military-grade
products.

As such, the component parts of the system are
designed to withstand everything from dust and debris
to chemical exposure, temperature extremes, UV,
radiation, electrical power transients, interference,
fire, moisture, humidity, water, crush, tension, flexing,
impact, and vibration.

Rick Hobbs, Director of Business Development at
Optical Cable Corporation (OCC), explains that when
designing a deployable fiber optic system, it needs to
be looked at in its entirety. Unlike fixed applications,
a deployable system is designed from beginning to
end (plug and play) and delivered to the customer as
a complete solution. OCC designs and manufactures
fiber optic cable, connectors and assembly solutions for
harsh and rugged environments.

According to Hobbs, the primary elements of a
deployable system include hardened cable jacketing;
“genderless” connectors for quick deployment without
regard for male or female ends; hybrid systems that
include copper along with fiber to deliver data com-
munications and power; and reel systems that speed
deployment and retraction while protecting the fiber
while not in use, or during transit.

Hardened Cabling

For purposes of deployment, OCC typically recom-
mends its tight bound, tight buffered distribution style

cabling, which is ideal because of its small diameter
and lightweight construction.

Distribution-style cables have a tight-bound outer
jacket, which is pressure extruded directly over the
cable’s core. This combination of a helically stranded
core, and a pressure extruded outer jacket provides an
overall cable construction that offers better crush and
impact protection and increased tensile strength. This
also reduces outer jacket buckling during deployment.

According to Hobbs, escalating degrees of cable
protection are available as needed to meet the specific
needs of an application.

Various jacket materials are available, including
PVC or polyurethanes, which are specifically tailored
to meet the mechanical and environmental needs of
the application. Options within each jacket material
include coefficient of friction, cold temperature flex-
ibility and temperature range, to name a few.

Water tolerant options are available that take advan-
tage of the qualities of tight buffered cable and super
absorbent polymer aramid yarn.

Fiberglass or metal braided jackets not only provide
excellent abrasion resistance, but also deliver increased
rodent protection. Custom rodent resistant cables are
available that include metal or dielectric armor or addi-
tives to the outer jacket.

“In deployable applications, exposed cable is often
an intriguing temptation for animals, which can, and
often do, chew on it.” says Hobbs.

Hybrid Cables, Connectors

For applications that can benefit from fiber optics and
copper, hybrid connector-cables offer both within the
same cabling sheath.

A distinct advantage of hybrid cable-connector solu-
tions is that the customer can bundle both the high
performance of fiber with the copper power or control
signals in one cable. This reduces the number of cables

16	 Technical Support | April 2014 www.NaSPA.com

technical support | article

that must be designed, purchased and deployed into a
system.

It also offers distinct savings in labor and cable struc-
ture costs for the customer.

Genderless Connectors

“Genderless” connectors have both male and female
elements, and perhaps are more appropriately described
as dual-gender. They are designed for quick deploy-
ment, allowing the user to unreel fiber cable without
regard for male or female ends.

Companies such as OCC have further simplified the
genderless design with user friendly mating interfaces
(the company’s EZ-Mate family) capable of “blind
mate” and/or applications that require thousands of
mating cycles.

In addition, the connector system is designed to resist
extreme harsh mechanical and environmental condi-
tions including high vibration, mechanical and thermal
shock, and fluid immersion.

Another benefit of genderless connectors is that mul-
tiple identical cable assemblies can be daisy-chained
(sequenced) together to extend the distance of a deploy-
able system while maintaining polarity. Polarity can be
an issue when connecting an odd number of traditional
male to female gender connectors. In such cases, an
additional connector is required to correct polarity.
However, such connectors are known for high loss and
add additional components for the customer. There-
fore, genderless connectors are uniquely advantaged
over traditional interconnection systems.

Distances of several kilometers are possible, limited
only by system link budget (dBm).

“This type of genderless connector provides extreme
flexibility in the case of redeployment, where the length
of the cable assemblies required for the next applica-
tion are not fixed, or even known,” says Hobbs.

Reel Systems

The key characteristics of a reel system in deploy-
able fiber optic applications are that it is lightweight
and stackable for storage and transit, says Hobbs.

To meet these requirements, companies such as OCC
are providing lightweight alternatives to traditional
metal reels. Constructed of durable, yet lightweight,
impact absorbing polymers, these modular advanced
reel systems (MARS®) are designed specifically for
the demanding needs of harsh-environment fiber optic
installations.

Reels can be used with simple deployable axle or a
flange supported deployment and acquisition system.
These types of systems include A-Frames, cable acqui-
sition cradles, transit case systems, tripods, bumper
mounts, backpacks, backpacks with fiber optic slip
rings, and cartridge systems.

The cartridge system, which comes with casters, is an
ideal choice in many deployable applications.

“Using a cartridge system, a single person can handle
multiple spools at once and can quickly deploy fiber
and rewind on the reel without assistance,” says Hobbs.

To simplify shipping and transit, cartridge systems,
transit cases and reels are designed with interlocking
stacking features.

Reel systems also provide a measure of protection of
fiber optic cabling for unspooled cabling, or when the
cabling is retracted.

“In harsh environments, when you can put your fiber
optic assemblies in a controlled environment stor-
age system like a reel, any potential damage to the
cable or the connectors is minimized,” says Hobbs.
“This reduces the need to refurbish components regu-
larly, because it the system better protected during its
deployment.”

800-622-7711 | occfiber.com

With cables and
connectivity developed
to resist chemical exposure,
moisture, dust, extreme
temperatures, and other
conditions often found in
mining operations, we deliver
a high-tech product with a blue-
collar work ethic. OCC delivers
quality communications under the
toughest conditions. And that’s a
commitment that runs deep.

Count on OCC for:
• Security
• Environmental Monitoring
• Voice/Data/Video
 Communications
• Automation
• Production Rates and
 Yields
• Equipment Control and
 Monitoring
• ERP

White collar
technology.

Blue collar
toughness.

OCC Tech Support Ad.indd 1 2/18/14 12:54 PM

17	 Technical Support | April 2014 www.NaSPA.com

Wireless Access/Data Communications

Although deployable fiber optic systems are largely
“wired,” hybrid cabling (the combination of fiber optic
and copper/electrical within the same cable sheath)
also allows for installation of wireless access points
anywhere, even underground. This is ideal when access
points are constantly changing.

Unlike traditional wireless networking devices that
require 110-Volt AC power for each device, with a
hybrid system power can be supplied in the same cable
that also carries voice and data.

As a result, any 802.11-certified devices are able to
communicate through the network, including personal
devices such as PDAs, laptops, VOIP devices and cell
phones.

This provides personnel even deep within mines with
the means to communicate with each other and even
make calls outside the system. In addition, sensor-
based data such as temperature, humidity, airflow and
gas can also be collected and delivered wirelessly for
use by the entire network.

Increasing Conversion to Fiber Optics

According to Hobbs, there are many industrial com-
panies that are converting to fiber optics as the costs
for components continue to drop, making fiber a bet-
ter solution than copper in most applications. Even
die-hard copper devotees are moving to fiber and when
they do, they rarely look back.

“When System Engineers realize the bandwidth
opportunities, they usually expand their capabilities,
and identify creative new ways to enhance the solu-
tions for their applications,” says Hobbs.

For more information about deployable fiber optic
system for harsh environments, contact Optical Cable
Corporation (OCC) at 5290 Concourse Drive, Roanoke,
Virginia, 24019; Phone: (800) 622-7711, Canada (800)
443-5262; FAX: 540-265-0724; Email: info@occfiber.
com; Visit the web site www.occfiber.com.

18	 Technical Support | April 2014 www.NaSPA.com

http://www.occfiber.com

The Components of a C Program
B y B r a d l e y L . J o n e s , P e t e r A i t k e n , D e a n M i l l e r

Sample Chapter is provided courtesy of Sams Publishing, an affiliate of longtime NaSPA supporter Informit.com. NaSPA thanks informit.com for
their contributions and recommends that NaSPA members visit informit.com for more insightful content.

In this lesson you will learn the components of a short
C program, the purpose of each program component,
and how to compile and run a sample program.

Every C program consists of several components com-
bined in a specific way. Most of this book is devoted to
explaining these various program components and how
you use them. To help illustrate the overall picture, you
should begin by reviewing a complete (though small)
C program with all its components identified. In this
lesson you learn:

•	 The components of a short C program
•	 The purpose of each program component
•	 How to compile and run a sample program
•	 A Short C Program

Listing 2.1 presents the source code for bigyear.c.
This is a simple program. All it does is accept a year
of birth entered from the keyboard and calculate what
year a person turns a specific age. At this stage, don’t
worry about understanding the details of how the pro-
gram works. The point is for you to gain some familiar-
ity with the parts of a C program so that you can better
understand the listings presented later in this book.

Before looking at the sample program, you need to
know what a function is because functions are central
to C programming. A function is an independent sec-
tion of program code that performs a certain task and
has been assigned a name. By referencing a function’s
name, your program can execute the code in the func-
tion. The program also can send information, called
arguments, to the function, and the function can return
information to the main part of the program. The two
types of C functions are library functions, which are a
part of the C compiler package, and user-defined func-
tions, which you, the programmer, create. You learn
about both types of functions in this book.

Note that, as with all the listings in this book, the
line numbers in Listing 2.1 are not part of the program.
They are included only for identification purposes, so
don’t type them.

Input down-arrow.jpg
Listing 2.1 bigyear.c - A Program Calculates What

Year a Person Turns a Specific Age

1: /* Program to calculate what year someone will
turn a specific age */

2: #include <stdio.h>
3: #define TARGET_AGE 88
4:
5: int year1, year2;
6:
7: int calcYear(int year1);
8:
9: int main(void)
10: {
11: // Ask the user for the birth year
12: printf("What year was the subject born? ");
13: printf("Enter as a 4-digit year (YYYY): ");
14: scanf(" %d", &year1);
15:
16: // Calculate the future year and display it
17: year2 = calcYear(year1);
18:
19: printf("Someone born in %d will be %d in

%d.",
20: year1, TARGET_AGE, year2);
21:
22: return 0;
23: }
24:
25: /* The function to get the future year */
26: int calcYear(int year1)
27: {

19	 Technical Support | April 2014 www.NaSPA.com

technical support | article

28: return(year1+TARGET_AGE);
29: }
Output down-arrow.jpg

What year was the subject born? 1963
Someone born in 1963 will be 88 in 2051.

The Program’s Components

The following sections describe the various compo-
nents of the preceding sample program. Line numbers
are included so that you can easily identify the program
parts discussed.

The main() Function (Lines 9 Through 23)
The only component required in every executable C

program is the main() function. In its simplest form, the
main() function consists of the name main followed by
a pair of parentheses containing the word void ((void))
and a pair of braces ({}). You can leave the word void
out and the program still works with most compilers.
The ANSI Standard states that you should include the
word void so that you know there is nothing sent to the
main function.

Within the braces are statements that make up the
main body of the program. Under normal circum-
stances, program execution starts at the first statement
in main() and terminates at the last statement in main().
Per the ANSI Standard, the only statement that you
need to include in this example is the return statement
on line 22.

The #include and #define Directives (Lines 2 and 3)
The #include directive instructs the C compiler to add

the contents of an include file into your program dur-
ing compilation. An include file is a separate disk file
that contains information that can be used by your pro-
gram or the compiler. Several of these files (sometimes
called header files) are supplied with your compiler.
You rarely need to modify the information in these
files; that’s why they’re kept separate from your source
code. Include files should all have an .h extension (for
example, stdio.h).

You use the #include directive to instruct the com-
piler to add a specific include file to your program
during compilation. In Listing 2.1, the #include direc-
tive is interpreted to mean “Add the contents of the
file stdio.h.” You will almost always include one or
more include files in your C programs. Lesson 22,
“Advanced Compiler Use” presents more information
about include files.

The #define directive instructs the C compiler to
replace a specific term with its assigned value through-
out your program. By setting a variable at the top of
your program and then using the term throughout the
code, you can more easily change a term if needed by
changing the single #define line as opposed to every
place throughout the code. For example, if you wrote
a payroll program that used a specific deduction for
health insurance and the insurance rate changed, tweak-
ing a variable created with #define named HEALTH_
INSURANCE at the top of your program (or in a header
file) would be so much easier than searching through
lines and lines of code looking for every instance that
had the information. Lesson 3, “Storing Information:
Variables and Constants” covers the #define directive.

The Variable Definition (Line 5)
A variable is a name assigned to a location in memory

used to store information. Your program uses variables
to store various kinds of information during program
execution. In C, a variable must be defined before it can
be used. A variable definition informs the compiler of
the variable’s name and the type of information the vari-
able is to hold. In the sample program, the definition on
line 4, int year1, year2;, defines two variables—named
year1 and year2—that each hold an integer value. Les-
son 3 presents more information about variables and
variable definitions.

The Function Prototype (Line 7)
A function prototype provides the C compiler with

the name and arguments of the functions contained in
the program. It appears before the function is used. A
function prototype is distinct from a function defini-
tion, which contains the actual statements that make
up the function. (Function definitions are discussed in
more detail in “The Function Definition” section.)

A variable definition informs the

compiler of the variable’s name

and the type of information the

variable is to hold.

20	 Technical Support | April 2014 www.NaSPA.com

Program Statements (Lines 12, 13, 14, 17, 19, 20,
22, and 28)

The real work of a C program is done by its state-
ments. C statements display information onscreen, read
keyboard input, perform mathematical operations, call
functions, read disk files, and all the other operations
that a program needs to perform. Most of this book is
devoted to teaching you the various C statements. For
now, remember that in your source code, C statements
are generally written one per line and always end with
a semicolon. The statements in bigyear.c are explained
briefly in the following sections.

The printf() Statement
The printf() statement (lines 12, 13, 19, and 20) is

a library function that displays information onscreen.
The printf() statement can display a simple text mes-
sage (as in lines 12 and 13) or a message mixed with
the value of one or more program variables (as in lines
19-20).

The scanf() Statement
The scanf() statement (line 14) is another library

function. It reads data from the keyboard and assigns
that data to one or more program variables.

The program statement on line 17 calls the function
named calcYear(). In other words, it executes the pro-
gram statements contained in the function calcYear().
It also sends the argument year1 to the function. After
the statements in calcYear() are completed, calcYear()
returns a value to the program. This value is stored in
the variable named year2.

The return Statement
Lines 22 and 28 contain return statements. The return

statement on line 28 is part of the function calcYear().
It calculates the year a person would be a specific age
by adding the #define constant TARGET_AGE to the
variable year1 and returns the result to the program
that called calcYear(). The return statement on line 22
returns a value of 0 to the operating system just before
the program ends.

The Function Definition (Lines 26 Through 29)
When defining functions before presenting the pro-

gram bigyear.c, two types of functions—library func-
tions and user-defined functions—were mentioned.
The printf() and scanf() statements are examples of the
first category, and the function named calcYear(), on
lines 26 through 29, is a user-defined function. As the
name implies, user-defined functions are written by the

programmer during program development. This func-
tion adds the value of a created constant to a year and
returns the answer (a different year) to the program that
called it. In Lesson 5, “Packaging Code in Functions,”
you learn that the proper use of functions is an impor-
tant part of good C programming practice.

Note that in a real C program, you probably wouldn’t
use a function for a task as simple as adding two num-
bers. It has been done here for demonstration purposes
only.

Program Comments (Lines 1, 11, 16, and 25)
Any part of your program that starts with /* and ends

with */ or any single line that begins with // is called a
comment. The compiler ignores all comments, so they
have absolutely no effect on how a program works. You
can put anything you want into a comment, and it won’t
modify the way your program operates. The first type
of comment can span part of a line, an entire line, or
multiple lines. Here are three examples:

/* A single-line comment */

int a,b,c; /* A partial-line comment */

/* a comment
spanning
multiple lines */
You should not use nested comments. A nested com-

ment is a comment that has been put into another com-
ment. Most compilers will not accept the following:

/*
/* Nested comment */
*/
Some compilers do allow nested comments. Although

this feature might be tempting to use, you should avoid
doing so. Because one of the benefits of C is portability,
using a feature such as nested comments might limit
the portability of your code. Nested comments also
might lead to hard-to-find problems.

The second style of comment, the ones beginning
with two consecutive forward slashes (//), are only for
single-line comments. The two forward slashes tell the
compiler to ignore everything that follows to the end
of the line.

// This entire line is a comment
int x; // Comment starts with slashes
Many beginning programmers view program com-

ments as unnecessary and a waste of time. This is a

21	 Technical Support | April 2014 www.NaSPA.com

mistake! The operation of your program might be quite
clear when you write the code; however, as your pro-
grams become larger and more complex, or when you
need to modify a program you wrote 6 months ago,
comments are invaluable. Now is the time to develop
the habit of using comments liberally to document all
your programming structures and operations. You can
use either style of comments you prefer. Both are used
throughout the programs in the book.

Do

DO add abundant comments to your program’s source
code, especially near statements or functions that could
be unclear to you or to someone who might have to
modify it later.

DO learn to develop a style that will be helpful. A
style that’s too lean or cryptic doesn’t help. A style that
is verbose may cause you to spend more time com-
menting than programming.

Don’t

DON’T add unnecessary comments to statements
that are already clear. For example, entering

/* The following prints Hello
World! on the screen */
printf("Hello World!);
might be going a little too far, at least when you’re

completely comfortable with the printf() function and
how it works.

Using Braces (Lines 10, 23, 27, and 29)
You use braces {} to enclose the program lines that

make up every C function—including the main() func-
tion. A group of one or more statements enclosed within
braces is called a block. As you see in later lessons, C
has many uses for blocks.

Running the Program
Take the time to enter, compile, and run bigyear.c. It

provides additional practice in using your editor and
compiler. Recall these steps from Lesson 1, “Getting
Started with C”:

Make your programming directory current.
Start your editor.
Enter the source code for bigyear.c exactly as shown

in Listing 2.1, but be sure to omit the line numbers and
colons.

Save the program file.

Compile and link the program by entering the appro-
priate command(s) for your compiler. If no error mes-
sages display, you can run the program by clicking the
appropriate button in your C environment.

If any error messages display, return to step 2 and
correct the errors.

A Note on Accuracy

A computer is fast and accurate, but it also is com-
pletely literal. It doesn’t know enough to correct your
simplest mistake; it takes everything you enter exactly
as you entered it, not as you meant it!

This goes for your C source code as well. A simple
typographical error in your program can cause the C
compiler to choke, gag, and collapse. Fortunately,
although the compiler isn’t smart enough to correct
your errors (and you’ll make errors—everyone does!),
it is smart enough to recognize them as errors and report
them to you. (You saw in Lesson 1 how the compiler
reports error messages and how you interpret them.)

A Review of the Parts of a Program

Now that all the parts of a program have been
described, you can look at any program and find some
similarities. Look at Listing 2.2 and see whether you
can identify the different parts.

Input down-arrow.jpg

Listing 2.2 list_it.c – A Program to List a Code List-
ing with Added Line Numbers

 1: /* list_it.c_ _This program displays a listing with
line numbers! */

 2: #include <stdio.h>
 3: #include <stdlib.h>
 4: #define BUFF_SIZE 256
 5: void display_usage(void);
 6: int line;
 7:
 8: int main(int argc, char *argv[])
 9: {
10: char buffer[BUFF_SIZE];
11: FILE *fp;
12:
13: if(argc < 2)
14: {
15: display_usage();
16: return (1);

22	 Technical Support | April 2014 www.NaSPA.com

 Please Consider Serving on the NaSPA Board
Since 1986 the Network and Systems Professionals Association has provided Information
Technology and Networking professionals worldwide with education, member discounts, job
placement and award winning publications. We are looking for a few accomplished, experienced,
and capable men and women willing to serve on our Board of Directors.
The mission of NaSPA, Inc., a not-for-profit organization, is to enhance the status and promote
the advancement of all network and systems professionals; nurture members' technical and
managerial knowledge and skills; improve members' professional careers through the sharing of
technical information; promote the profession as a whole; further the understanding of the
profession and foster understanding and respect for individuals within it; develop and improve
educational standards; and assist in the continuing development of ethical standards for
practitioners in the industry.
If you think you have what it takes to mentor the next generation of Information Technology
professionals, we would like to hear from you. Please contact me directly at president@naspa.com
and let’s begin the journey.

Experience
Wanted

17: }
18:
19: if ((fp = fopen(argv[1], "r")) == NULL)
20: {
21: fprintf(stderr, "Error opening file, %s!",

argv[1]);
22: return(1);
23: }
24:
25: line = (1);
26:
27: while(fgets(buffer, BUFF_SIZE, fp) != NULL

)
28: fprintf(stdout, "%4d:\t%s", line++, buffer);
29:
30: fclose(fp);
31: return 0;
32: }
33:
34: void display_usage(void)
35: {
36: fprintf(stderr, "\nProper Usage is: ");
37: fprintf(stderr, "\n\nlist_it filename.ext\n");
38: }
Output down-arrow.jpg

C:\>list_it list_it.c
 1: /* list_it.c - This program displays a listing with

line numbers! */
 2: #include <stdio.h>
 3: #include <stdlib.h>
 4: #define BUFF_SIZE 256
 5: void display_usage(void);
 6: int line;
 7:
 8: int main(int argc, char *argv[])
 9: {
10: char buffer[BUFF_SIZE];
11: FILE *fp;
12:
13: if(argc < 2)
14: {
15: display_usage();
16: return (1);
17: }
18:
19: if ((fp = fopen(argv[1], "r")) == NULL)
20: {

21: fprintf(stderr, "Error opening file, %s!",
argv[1]);

22: return(1);
23: }
24:
25: line = 1;
26:
27: while(fgets(buffer, BUFF_SIZE, fp) !=

NULL)
28: fprintf(stdout, "%4d:\t%s", line++, buffer);
29:
30: fclose(fp);
31: return (0);
32: }
33:
34: void display_usage(void)
35: {
36: fprintf(stderr, "\nProper Usage is: ");
37: fprintf(stderr, "\n\nlist_it filename.ext\n");
38: }
Analysis down-arrow.jpg

The list_it.c program in Listing 2.2 displays C pro-
gram listings that you have saved. These listings dis-
play on the screen with line numbers added.

Looking at this listing, you can summarize where the
different parts are. The required main() function is in
lines 8 through 32. Lines 2 and 3 have #include direc-
tives. Lines 6, 10, and 11 have variable definitions.
Line 4 defines a constant BUFF_SIZE as 256, the stand
size for buffers. The value to doing this is that if the
buffer size changes, you only need to adjust this one
line and all lines using this constant will automatically
update. If you hardcode a number like 256, you’d have
to search all your lines of code to make sure you caught
all mentions.

A function prototype, void display_usage(void), is in
line 5. This program has many statements (lines 13, 15,
16, 19, 21, 22, 25, 27, 28, 30, 31, 36, and 37). A func-
tion definition for display_usage() fills lines 34 through
38. Braces enclose blocks throughout the program.
Finally, only line 1 has a comment. In most programs,
you should probably include more than one comment
line.

list_it.c calls many functions. It calls only one user-
defined function, display_usage(). The library func-
tions that it uses are fopen() in line 19; fprintf() in lines
21, 28, 36, and 37; fgets() in line 27; and fclose() in line

24	 Technical Support | April 2014 www.NaSPA.com

30. These library functions are covered in more detail
throughout this book.

Summary

This lesson was short, but it’s important because it
introduced you to the major components of a C pro-
gram. You learned that the single required part of every
C program is the main() function. You also learned that
a program’s real work is done by program statements
that instruct the computer to perform your desired
actions. You were also introduced to variables and vari-
able definitions, and you learned how to use comments
in your source code.

In addition to the main() function, a C program can
use two types of subsidiary functions: library func-
tions, supplied as part of the compiler package, and
user-defined functions, created by the programmer. The
next few lessons go into much more detail on many of
the parts of a C program that you saw in this lesson.

Q&A

Q What effect do comments have on a program?
A Comments are for programmers. When the com-

piler converts the source code to object code, it throws
the comments and the white space away. This means
that they have no effect on the executable program. A
program with a lot of comments executes just as fast
as a program with few comments. Comments do make
your source file bigger, but this is usually of little con-
cern. To summarize, you should use comments and
white space to make your source code as easy to under-
stand and maintain as possible.

Q What is the difference between a statement and a
block?

A A block is a group of statements enclosed in braces
({}). A block can be used in most places that a state-
ment can be used.

Q How can I find out what library functions are
available?

A Many compilers come with online documentation
dedicated specifically to documenting the library func-
tions. They are usually in alphabetical order. Appendix
C, “Common C Functions,” lists many of the available
functions. After you begin to understand more of C, it
would be a good idea to read that appendix so that you
don’t rewrite a library function. (There’s no use rein-
venting the wheel!)

Workshop
The Workshop provides quiz questions to help you

solidify your understanding of the material covered and
exercises to provide you with experience in using what
you’ve learned.

Quiz

What is the term for a group of one or more C state-
ments enclosed in braces?

What is the one component that must be present in
every C program?

How do you add program comments, and why are
they used?

What is a function?
C offers two types of functions. What are they, and

how are they different?
What is the #include directive used for?
Can comments be nested?
Can comments be longer than one line?
What is another name for an include file?
What is an include file?
Exercises
Write the smallest program possible.
Consider the following program:
1: /* ex02-02.c */
2: #include <stdio.h>
3:
4: void display_line(void);
5:
6: int main(void)
7: {
8: display_line();
9: printf("\n Teach Yourself C In One Hour a

Day!\n");
10: display_line();
11:
12: return 0;
13: }
14:
15: /* print asterisk line */
16: void display_line(void)
17: {
18: int counter;
19:
20: for(counter = 0; counter < 30; counter++)
21: printf("*");
22: }
23: /* end of program */
What line(s) contain statements?

25	 Technical Support | April 2014 www.NaSPA.com

What line(s) contain variable definitions?
What line(s) contain function prototypes?
What line(s) contain function definitions?
What line(s) contain comments?
Write an example of a comment.
What does the following program do? (Enter, com-

pile, and run it.)

1: /* ex02-04.c */
2: #include <stdio.h>
3:
4: int main(void)
5: {
6: int ctr;
7:
8: for(ctr = 65; ctr < 91; ctr++)
9: printf("%c", ctr);
10:
11: printf("\n");
11: return 0;
12: }
13: /* end of program */
What does the following program do? (Enter, com-

pile, and run it.)
1: /* ex02-05.c */
2: #include <stdio.h>
3: #include <string.h>
4: int main(void)
5: {
6: char buffer[256];
7:
8: printf("Enter your name and press <Enter>:\n");

9: fgets(buffer);
10:
11: printf("\nYour name has %d characters and

spaces!",
12 strlen(buffer));
13:
14: return 0;
15: }

Bradley L. Jones is the site manager for a number of high profile developer
sites including CodeGuru.com, Developer.com, and Javascripts.com and
he is an Executive Editor of internet.com's EarthWeb channel. Bradley has
been working with C# longer than most developers since he was invited to
Microsoft prior to the official beta release. Bradley's background includes
experience developing in C, C++, PowerBuilder, SQL Server, and numer-
ous other tools and technologies. Additionally, he is an internationally
best selling author who wrote the original 21 Days book -- Sams Teach
Yourself C in 21 Days.

Peter Aitken has been writing about computers and programming for
more than 10 years, with some 30 books and more than 1.5 million copies
in print as well as hundreds of magazine and trade publication articles.
His book titles include Sams Teach Yourself Internet Programming With
Visual Basic in 21 Days and Sams Teach Yourself C in 21 Days. A regular
contributor to Office Pro magazine and the DevX Web site, Peter is the
proprietor of PGA Consulting, providing custom application and Internet
development to business, academia, and government since 1994. You can
reach him at peter@pgacon.com.

Dean Miller is a writer and editor with more than 20 years of experience in
both the publishing and licensed consumer product businesses. Over the
years, he has created or helped shape a number of bestselling books and
series, including Teach Yourself in 21 Days, Teach Yourself in 24 Hours, and
the Unleashed series, all from Sams Publishing. He has written books on C
programming and professional wrestling, and is still looking for a way to
combine the two into one strange amalgam.

26	 Technical Support | April 2014 www.NaSPA.com

mailto:peter@pgacon.com

“You May Be Entitled
to a Cash Recovery”

“Found Money is a Good Thing.” TM

 H o n e s t y I n t e g r i t y K n o w l e d g e E x p e r i e n c e C r e d i b i l i t y R e p u t a t i o n

Damage Claim, Financial Dispute, or Disaster?
The “right” Experts can improve chances for financial recovery from
data center disasters, cable cuts, billing disputes, and other complex
technology claims.
The Leo A. Wrobel Companies are your entry point to a
nationwide network of Experts. We are not a law firm. We are the
technical Experts who do the heavy lifting in complex disputes, loss
claims and lawsuits. In many cases you pay nothing unless you collect.
If your organization has sustained a loss and seeks financial recovery,
call us first before you call a law firm. We have recovered millions
in damage, performance, contract, and billing dispute claims since
1999 - often without any litigation.

 $
In cases where litigation is unavoidable, we work with law firms that
win cases because they employ the “right” Experts ... Like Us.

So why not get started right now? Call 1(214) 888-1300 for a
confidential assessment of your claim, dispute, or disaster. After all,

Things Technology Companies Should Know About
Asset Protection, Dispute Resolution, and Disaster Recovery

TelLAWCom Labs Inc. specializes in financial dispute resolution with experience in claims from
$30,000 to $200 million. www.tlc-labs.com
b4Ci Inc. helps manage risk by writing disaster recovery plans, conducting business impact analysis
and on site training. www.b4Ci.com
ROW911 provides financial recovery for fiber and telephone cable cuts, as well as pipeline, electric
and other damage claims, for owners and affected end users. www.row911.com

SAVE ON THE BOOKS YOU NEED TO

CRC Press
Taylor & Francis GroupW W W . C R C P R E S S . C O M

Sign Up for Our Free Newsletters and Connect with CRC Press IT Books
on Facebook, Twitter, and LinkedIn to Keep the Discounts Coming!

The final word in
information systems

security

In-depth... insightful...
for today’s technology

leaders

Improving organizational
performance
through IT

Order online and enter discount code CVM25 to SAVE 25%

ISBN: 978-1-4398-5055-8 ISBN: 978-1-4398-2119-0 ISBN: 978-1-4665-6503-6

ISBN: 978-1-4398-7726-5 ISBN: 978-1-4398-6854-6 ISBN: 978-1-4398-5178-4

Secure the Multifaceted Layers
of Your Networks and Systems

